GBT Command Line Proposal

This is a proposal for a command line interface for the GBT real-time control system.

by F.Ghigo, T.Minter, K.ONeil, R.Maddalena
May 21, 2003

Contents
· 1.0 Introduction.
· 1.1 Why command-line interface.
· 1.2 General Requirements.
· 1.3 Help facility.
· 1.4 Remarks on Implementation.
· 2.0 Users Manual A: Language features and syntax.
· 3.0 Users Manual B: Dictionary of keywords.
· 4.1 Users Manual C1: Configuration commands.
· 4.2 Users Manual C2: Balancing commands.
· 4.3 Observing Commands.
· 4.4 Lower Level Functions.
1.0 Introduction

The current observer’s interface (GO) was started as a prototype and was eventually changed to the production interface. GO is now nearing the end of its lifetime and a new interface is being considered as part of the “GBT ease of use project.” Discussions among astronomers regarding a new observer’s interface led to the recommendation that a command line interface should be developed first. The GUI interface will later be built on top of the command line language. This has multiple advantages, including making the GUI more transparent, allowing observers to implement strategies not yet accounted for in the GUI, and acting as a back-up system for GUI failures.

1.1 Reasons why a command-line interface is important

· An astronomer doing a series of experiments can save the command file used in the first session and use it again at a later date to assure that the system is set up just as it was before.

· Experiments can be set up and run in batch mode -- switching from one experiment to the next just requires loading the right batch file.

· An astronomer can develop his own library of observing setups and procedures.

· A command-line interface is readily adapted to remote observing and dynamic scheduling.

· Considerable flexibility in setup and observing is allowed: "cutting edge" observations can be set up without requiring software modifications.

It is important that the command-line system remain stable, or at least backward compatible, for decades: If an astronomer returns after an absence of several years, he should expect that his many-year-old batch file still will work.

It should also be noted that the presently existing Cleo save/restore facility does not provide the needed capability because it is too thorough and too close to the hardware. Specifics of M&C managers may change from time to time. If one saves the system state with Cleo and then tries to restore it after a small manager change has happened, the restore may fail. This problem can be avoided by using configuration commands based on general keyword values. The command interpreter uses the high level keywords to command the M&C devices. Any changes in the hardware or the M&C managers must be dealt with by changes in the implementation of the command, but the commands and keywords stay the same.

1.2 General Requirements.

The system should provide commands for configuring the many GBT devices. There should be commands for setting parameters in individual devices as well as a general configuration command. Commands for all the standard observing procedures should be provided. The system should include the capabilities presently available in GO Tables.

There should be a capability for easily writing subroutines, or procedures, composed of any pre-existing commands or functions. The user should be able to create text files of commands and functions which can be loaded and executed. Any such text file should be able to include other text files.

A user should be able to easily create new observing procedures in this language (to add to standard ones such as "track", "onoff", etc). Loading a text file with these procedure definitions will add these procedures temporarily to the repertoire. Optionally, the name of the new observing procedure and its parameters will be recorded in the GO FITS file when the procedure is run.

Any command should know which of its keywords has changed since its last call. Any command should take actions based on its associated set of keywords, and should be able to do only the minimum actions required by recent changes in one or more keywords. See Section 2.10.

All commands should check their keywords for consistency and sanity and report any problems.

The routine which chooses the signal paths through the IF system, which we refer to as "findPaths", and which is described in Ghigo and Maddalena (April 9: "GBT Configuration") section 7.0, must consult three files: 1)the standard cabling file, 2)the module quality file, and 3)a temporary bad devices file. The first two are maintained by the Engineers or Operators and indicate the state of the IF cabling and hardware modules. The user can set devices in the temporary bad device file to temporarily override the module quality file and thus try using alternate modules for debugging purposes, or to patch around faulty hardware discovered during an observing session. A user can load his bad devices list from a file.

1.3 Help Facility

A help facility should be built into the command language. Although web-based documentation is useful, there should be some information available within the context of the command language where it will be immediately available. See section 2.10.

1.4 Remarks on Implementation

We do not suggest any specific implementation, but leave this to the software group. The command-line language needs to be an interpreted language, and it can be built out of some existing and well-known language, such as C++ or Python. Commands should be easy to write in the underlying language.

The capability of the existing GO Table system, allowing observing schedules in columnar form, should be retained.

The observer's GUI built on top of the command-line language should be able to save and restore the current configuration to and from a text file consisting of commands of the command-line language. One should be able to load any text file of commands and procedures, and have any new observing procedures appear in the GUI.

2.0 Users Manual A: Language and Syntax.

Here we give desirable characteristics of a user-friendly interpreted command language. Exact details of the language will be worked out by discussions between the software group and the staff astronomers. We do not expect the software group to provide all the configuration commands and all the observing commands described in subsequent sections. What we hope is that they can provide this interpreter system, some basic commands, and a means to create new commands in the context of an underlying programming language (e.g. Python). Given this, staff astronomers can write many of the configuration and observing commands.

2.1 Statements and delimiters.

Delimiters will be blanks, commas, or semicolons. Blanks can also be used to space out statements for readability. The underscore is treated as an ordinary alphabetic character.

For example, the following two statments mean the same:

param1=17

param1 = 17

One may put several statements on the same line:

param1=17 param2 = 'Fred' param3='weevils'

param1=17, param2 = 'Fred', param3='weevils'

New-line or end-of line is ignored within a statement, so one may write:

param1 =

 14.2

Characters that are used as parts of numbers, such as period, decimal point, plus and minus signs, cannot be used as delimiters.

Any value that contains alphabetics is taken to be a string, for example, param1=A0045 means the same as param1='A0045' If a string contains blanks or all numbers, it must be in quotes.

Comments begin with a hash mark (#). Anything from the hash mark to the end of the line is ignored. These may be imbedded within statements, for example the following will work:

param1 = # comment 1

14.2 # comment 2

2.2 Variables.

Assignment of a value to a variable is done with the equals (=) sign. Variables may be assigned a value which is a list or array of either numbers or strings. For example:

param1=12

param2= [2, 4, 6, 9]

param3 = ['one', 'two', 'three']

Record structures are also available, for example:

 param4= [fred='one', sam= 17.33, olive=['primroses', 'catalpa']]

There are global variables corresponding to the configuration keywords. For example, the receiver keyword is set as follows:

receiver = 'Rcvr1_2'

Variables associated with specific commands or procedures may be set with the syntax "command.variable=", for example:

lo1.tolerance= 10

proc.rarate = 40

The user can create a new variable "A" with the statement:

define A

If a new variable is created outside a function definition, it is global. If it is created within a function definition, it is local to that function. If a new variable has the same name as a previously defined variable, a warning message is issued and the re-definition is allowed.

2.3 Tables.

Observing tables will work just as they do now in the GO Table system. For example, in GO tables:

header

source ra dec velocity procedure

I00070+6503 00:09:43.67 +65:20:09.3 -36.3 OffOn

I00117+6412 00:14:27.72 +64:28:46.2 -51.2 OffOn

I00420+5530 00:44:57.62 +55:47:18.1 -30.0 OffOn

is equivalent to:

source=I00070+6503 ra=00:09:43.67 dec=+65:20:09.3 velocity= -36.3 OffOn

source=I00117+6412 ra=00:14:27.72 dec=+64:28:46.2 velocity= -51.2 OffOn

source=I00420+5530 ra=00:44:57.62 dec=+55:47:18.1 velocity= -30.0 OffOn

Note here that "OffOn" is a command name which is executed simply by invoking it.

The table can be interrupted with other statements, then resumed.

2.4 Other Existing GO Table Features.

Other useful features of the present GO table system will be retained. Refer to Rick’s writeup on GO Tables for details (http://www.gb.nrao.edu/~rfisher/Glish/shorthand.html).

· query: a query function asks the user for a response.

· alias: an alias can be created for any command, function, or variable.

· everything is case insensitive

· a table or include file is parsed and checked for errors before it is used

· If running from the GUI, one may select single lines or ranges of lines to execute.

· array syntax is allowed as in Rick's writeup of GO tables.

· time and angle formats recognized.

2.5 Arithmetic and logic.

Arithmetic expressions using the usual operators (* + - / % ^) and logical expressions using (== <= >= !=) work as they do in C. Parentheses can be used to group compound expressions.

2.6 IF statements and loops

IF ... ELSE/ELSEIF, WHILE, FOR, and REPEAT constructs can be used. Statements may be grouped together with BEGIN ... END for use inside these constructs.

IF 6h<lst()<12h

begin source='1022+33' scanlength=180 offon end

ELSE begin source='1833+65' scanlength=240 offon end

WHILE elevation()>30d begin source='1833+333' ralongmap end

REPEAT 5 offon

2.7 Functions

A function can be defined as follows:

func newfunction(parameterlist)

begin

....

....

....

end

Parameters in the call may be matched with parameters in the function either by order or by name.

2.8 Includes

A text file of any valid statements and function definitions may be executed by using the include command:

 include 'textfilename'
2.9 Executing lower level code

Code written in the underlying language (e.g. Python) can be loaded in a command line session. For this, use "run":

 run 'filename'
2.10 Commands.

By "commands", we mean both configuration and setup commands, and observing procedures. These commands have certain built-in features making them somewhat more sophisticated than ordinary functions.

A command uses a certain set of parameters which are keyword values either global or local to that command. It is possible to set all the parameters needed for a particular command prior to invoking the command. In that case one simply invokes the name of the command without any parameter list. For example, using the command "setReceiver" :

 receiver='Rcvr1_2'

 pol='circ'

 cal='lo-ext'

 setReceiver
The parameters may be given as in a traditional function call with the same effect:

 setReceiver(receiver='Rcvr1_2', pol='circ', cal='lo-ext')
A command knows the state of its keywords or other parameters; in particular, it can determine which of its parameters have changed since the last invocation. Different types of invokation are possible:

 commandname

Performs only those actions required by any changes of

parameters that have happened since the last invocation.

 commandname.init

Performs all operations to implement all its parameters,

regardless of whether any parameters have changed or not.

 commandname.check

Simply reports whether any of its parameters have changed since

the last invocation.

 commandname.list

Lists the current values of its parameters.

 commandname.verify

Verifies that the system is actually set up as specified

by the keywords that this command knows about.

Reports any discrepancies.

 commandname.default

Sets everything to default values.

Not all commands will have all these abilities; only ones for which such capabilities are appropriate. Other options can be implemented if necessary. In particular, all commands should have a "help" option, invoked as:

 commandname.help

or

 commandname(help)

or

 help(commandname)

3.0 Users Manual B: Dictionary of Keywords.

The following two tables list the main keywords which are needed to configure the system. The chart in Figure 1 shows how the flow of information goes from keywords to hardware devices.

	

	Primary Configuration Keywords

	

	Primary Keyword
	Options
	Used by Commands
	Description

	Receiver
	Rcvr_342
Rcvr_450
Rcvr_600
Rcvr_800
PF2
Rcvr1_2
Rcvr2_3
Rcvr4_6
Rcvr8_10
Rcvr12_18
Rcvr18_22
Rcvr22_26
Rcvr40_52
Holography
	Configure
findPaths
calcLOBW
setReceiver
setLO1
setIFRack
	Chooses the front-end of the system

	Obstype
	Spectroscopy
Continuum
Pulsar
VLBI
Radar
	Configure
setObstype
setBackend
	Choose the type of observing

	Backend
	DCR_IF
DCR_AF
DCR_PF
SP
SP/PT
SP/PS
ACS
VLBI
Radar
BCPM

Viable combinations can also be used
(e.g. DCR+ACM, BCPM+SP)
	Configure
findPaths
calcLOBW
setObstype
setBackend
	Chooses the backend or viable combinations of backends.

Note that the DCR has three input modes: the IF rack, the analog filter rack, and the Prime Focus receivers. The default should be the DCR_IF option.

	Bandwidth
	Spectrometer, DCR_AF: 800, 200, 50, 12.5

Spectral processor: 40, 20, 10, 5, 2.5,
1.25, 0.625, 0.312, 0.156, 0.078

VLBA:any multiple of 4MHz,
up to 500MHz.

Radar:20MHz (no options)

BCPM:192 MHz (no options)

DCRF_IF options are:

· PF1,PF2: 20,40,80,240

· Rcvr1_2,Rcvr4_6,Rcvr8_10,
Rcvr12_15: 20,80,320,1280

· All other Rcvrs: 80,320,1280
	Configure
calcLOBW
findPaths
setBandwidth
	This is the bandwidth of each spectral window. (This can be an array if more than 1 spectral window.)

	Nwin
	1,2,3,4,8
	Configure
findPaths
calcLOBW
setNwin
	This simply lists the number of spectral windows available for observing. The number available is dependent on the backend, receiver, and bandwidth, as follows:

· Spectrometer, DCR_AF at <10GHz, w/ slow samp.: max=8;

· Spectrometer, DCR_AF at >10GHz, w/ slow samp.: max=4;

· Spectrometer, DCR_AF w/ fast samp.: max=4;

· Spectral Processor: max=4;

· DCR_IF:1

	Restfreq
	An array of frequencies
	Configure
calcLOBW
setRestFreq
	This is an array of frequencies, with one frequency for each spectral window. If more spectral windows are requested than frequencies given, the last frequency should be repeated to fill the windows. E.g. if Nwin=4 and Restfreq=[1420.5048] then each spectral window ends up with a center freq. of 1420.4058. The default should be one number equal to the center of the band for each receiver.

The first frequency in the array is the one that is doppler tracked by the LO1 system.

	Deltafreq
	An array of frequencies
	Configure
calcLOBW
	This is an array of offsets in the local frame for the spectral windows. As with the rest frequencies array, if more spectral windows are requested than frequency offsets given, the last offset should be repeated to fill the windows. The default is 0.

	

	Secondary Configuration Keywords

	

	Secondary Keyword
	Options
	used by commands
	Description
	Defaults

	Balance
	PF, IF, LO, SP, ACS, or any combination of these.
	Configure
Balance
	This is a list of devices to balance, used by the Balance command.
	IFRack

	Beams
	1, 2, 3, 4
12, 34, 1234
	Configure
findPaths
setReceiver
	Specify beam selection for multi-beam receivers.
	1

	Polarization
	lin, circ
	Configure
setReceiver
	Selects polarization mode.
	"lin" (receivers < 7GHZ), else "circ"

	Tuningfreq
	a frequency in MHz
	Configure
setReceiver
	Tuning frequency for the receiver. Used by the receiver manager to set gains and phases for the linear-to-circular polarization hybrid. Used by multi-beam receivers to set gains that balance beam powers. This value normally supplied by "calcLOBW".
	Restfreq[1]

	Noisecal
	off
on-ext
lo-mcb
lo-ext
hi-mcb
hi-ext
	Configure
setReceiver
	Turns on and off the various noise cals, and set the cal control. The "ext" vs. "mcb" options control whether the switching is controlled externally or if the cal is simply turned on.
	"lo-ext"

	Xferswitch
	thru
cross
ext
	Configure
setReceiver
	Sets the state of the receiver transfer switch, if any.
	"thru", unless Swtype is bsw or psw, in which case it is "ext".

	Swmode
	tp
tp_nocal
sp
sp_nocal
	Configure
setSC
	Defines the switching mode of the system: total or switched power.
	"tp"

	Swtype
	fsw
bsw
psw
none
	Configure
setSC
setReceiver
setLO1
	This specifies frequency switching (fsw), beam switching (bsw) or polarization switching (fsw). Other options, such as tertiary switching, may be added in the future.
	"none"

	Swper
	A time in seconds
	Configure
setSC
	This defines the switching cycle period. The default depends on observing type.
	· Spectroscopy: 1s;

· Continuum: 0.2s;

· Pulsar: 0.04s;

· Anything Else: 1s;

	Swfreq
	An array of two frequencies (MHz).
	Configure
setLO1
	The frequency offsets for frequency switching mode
	[0, 0]

	Velocity
	One number (km/sec)
	Configure
calcLOBW
setLO1
	This is the velocity for the observation and sets the LOs/filters up accordingly. It is applied equally to all spectral windows.
	0

	Vlow, Vhigh
	two velocities (km/sec)
	Configure
calcLOBW
setLO1
	These may be used to set up all the bandpass filters to encompass this range of velocities.
	[0, 0]

	Vdef
	Radio
Optical
Relativistic
	Configure
calcLOBW
setLO1
	This specifies the velocity definition.
	Radio

	Vframe
	Local
Barycentric
Heliocentric
LSRK
LSRD
Galactocentric
	Configure
calcLOBW
setLO1
	This specifies the rest frame of the system.
	Local

	Nchannels
	For spectrometer:
65536, 32768, 16384,
8192, 4096, 2048
(or Low, Medium, High)

For spectral processor:
1024, 512, 256
	Configure
setSP
setACS
	Applicable only for the spectrometer and spectral processor.
	max. number available for the desired bandwidth, backend, sampling level and number of beams.

	Rcvrfilters
	options depend on receiver
	Configure
setReceiver
	Bandpass/notch filters available for each receiver. Default should be figured out from the receiver, bandwidth, and frequencies of interest. Normally the receiver filters are determined by the "calcLOBW" function from Nwin, Bandwidth, etc., but this keyword can be used to override the results of calcLOBW.
	

	Nlevels
	9- or 3-level
	Configure
setACS
	Applicable only for spectrometer, with the slow samplers.
	9

	Tint
	Spectrometer:

· 1 quadrant: 0.5s - 40s

· 2 quadrant: 0.7s - 40s

· 3 quadrant: 1.0s - 40s

· 4 quadrant: 1.2s - 40s

SP:1s-60s?

DCR: 0.01s - 60s
	Configure
setDCR
setACS
setSP
	Backend integration time. For continuum mapping or pointing, the default can be set to Swper; otherwise set the default to 10 sec.
	

	Crosspol
	Cross
Parallel
Both
	Configure
setSP
setACS
	Set backend for cross products. Currently only applicable to the Spectral Processor. Eventually, the spectrometer will also do the cross products
	parallel

	Baddevs
	[list of devices]
	Configure
setBadevice
	List of devices to avoid. Temporarily overrides the module quality file.
	none

[image: image1.png]Figure 1. Information Flow from Keywords to Devices.

S Receiversean
i S e
Viow i, Vet —| [—Spe
Bancwith — e
— Utame
A Ad v
Frequency m I Scan Coordinator
Calculations L athFinder setuy
Temp—) |—€Fath List »
Noisecat TuningFreq ———————»] - Manager —
Swie Mot 3| Receiver Setup & }
Swichnto
Sutoe sl Manages
Sueq Resttreat
Veise RS 3 pu— S Y — Reseiver Paameter
Vief, rame | — Tokrance ———— |
R —
IF bandps TFRack Setup |o
— Lozniemences — ol Converter Rack
setup a—
— ‘Analog Fiter
Rack setup [+ |
Tt DCR_IF
e
e DCR_AF |
setup
Tt
Obstre
Sancith Spectrometer
Nirows —
Nievels setup
Nehannets
Tt
Obstpe Spectral Processor
Bancwith Setup pa—
Nindows
Nehannets
Nvindows
tningFreas BCPMsewp |, |

4.0 Users Manual C1: Dictionary of Commands.

4.1 Configuration Commands

	

	Configuration Commands

	

	Command
	uses keywords
	Description
	

	Configure
	all keywords
	This sets up all devices as specified by the keywords. Later commands in this table let one re-set up the configuration due to a change of one keyword, or override the keywords and change the setup of individual devices.
	

	calcLOBW
	Nwin
Restfreq
Deltafreq
Vlow,Vhigh,Vdef
Receiver
Beams
Backend
Bandwidth
	Determines LO1 and IF1 for the LO1 manager, LO2s and filter selections, tuning frequency, IF bandpass filters, and RF filters. The results are used to set filters in the Receiver, IF Rack, Analog Filter Rack; the tuning frequency in the receiver; the LO1 and IF1 frequencies in the LO1 manager; the LO2 frequencies in the Converter Rack.

The results are printed or displayed. The calculated parameters are global variables available to all commands that need them.
	

	findPaths
	Nwin
Receiver
Beams
Backend
Bandwidth
	Select paths from receiver to backend for Nwin windows. Consult a)the cabling file, b)module quality file, c)temporary bad device file.
The results are used to set switches in the IF Rack, Converter Rack, and analog filter rack, and select samplers in the backend.

The results are printed or displayed. The path information is put into a global structure available to all commands that need it.
	

	setBadevice
	Baddevs
	Lets the user set a bad device in the temporary bad device file.
	

	setReceiver
	Receiver
Tuningfreq
Noisecal
Xferswitch
Filters
Beams
	Change receiver selection and set receiver-specific options.
	

	setBandwidth
	Bandwidth
	Changes selected back-end bandwidth: runs calcLOBW, findPaths, and changes setups to all devices as necessary.
	

	setObstype
	Obstype
	Change Obstype and makes changes to setups as necessary.
	

	setBackend
	Backend
	change backend selection. Needs to run calcLOBW, findPaths, and change setups of devices as necessary.
	

	setNwin
	Nwin
	Change number of spectral windows. Runs findPaths and change devices setups as necessary.
	

	setRestfreqs
	restFreqs
	Change Rest frequency array. Runs calcLOBW and makes changes to LO1 and Converter rack as necessary.
	

	setDeltafreqs
	deltaFreqs
	Change frequency offset array. Runs calcLOBW and makes changes to LO1 and Converter rack as necessary.
	

	setSC
	Receiver
Backend
Swmode
Swper
	Set up the Scan Coordinator. Use this command to override how it was set up with the Configure command.
	

	setLO1
	Receiver
Restfreq
Velocity
Vdef
Vframe
Tolerance
Swfreq
Swtype
Phasecal
Testtone
	Set up LO1. Use this command to override the standard configuration, also to set oddball options such as phasecal and test tones.
	

	setIFRack
	Receiver
Pathlist
IF bandpass
transfer switches
balance levels
	Set IF Rack-specific options.
	

	setCNVRack
	Pathlist
Backend
output select switches
	Set converter rack options.
	

	setAFR
	Pathlist
Bandwidth
Backend
filter settings
	Set analog filter rack options.
	

	setDCR
	Pathlist
Tint
	Set DCR options.
	

	setACS
	Pathlist
Nchannels
Bandwidth
Nlevels
Tint
	Set spectrometer options.
	

	setSP
	Pathlist
pulsar/spectral mode
Nchannels
Tint
Bandwidth
pulsar-specific options
	Set spectral processor options.
	

	setBCPM
	Pathlist
channelBW
sumpol
other BCPM options.
	Set BCPM options.
	

4.2 Balancing Commands

	

	Balancing Commands

	

	Command
	uses keyword
	Description
	

	Balance
	Balance
	Adjusts power levels as specified by the Balance keyword.
	

	Balance_PF
	Balance
	Adjusts power levels in the prime focus receiver.
	

	Balance_IF
	Balance
	Adjusts power in the IF Rack.
	

	Balance_LO
	Balance
	Adjusts the LO power.
	

	Balance_SP
	Balance
	Adjusts the power in the Spectral Processor.
	

	Balance_ACS
	Balance
	Adjusts the power in the Spectrometer (ACS).
	

4.3 Observing Commands

Observing commands run observing procedures such as the existing "track", "offon", "pointmap", etc. These commands have the properties of commands in general as described in section 2.10. In addition, these commands will cause the generation of a GO FITS file when they run a scan. The name of the observing procedure and its parameters will be written to the FITS file. New observing commands can be written in terms of existing commands.

All of the existing observing procedures available in GO will become observing commands and will have a similar format and properties as the previously discussed commands. We will not describe them here.

4.4 Lower Level Functions

M&C Access Functions

Commands are built out of lower level functions that provide access to the YGOR system. Basic functions that get and set YGOR parameters need to be provided. Something of the following sort would be used to set and get manager parameters:

 setygor(managername, parametername, value)

 a = getygor(managername, parametername)
A repertoire of manager control functions, similar to what is available in ygor_g and segeste, will be available. For example, some of these function might look like this:

start(managername, time)

stop(managername)

regchange(managername)

mstate = getstate(managername)

Utility Functions

Numerous utility functions will be available, which can be used in observing scripts to do such things as wait until a source rises, observing a source until the opacity reaches a certain point then change to another source, and so on. A list of such function follows,

although we will leave the details of their calling sequences for future discussions.

Lst()

Utc()

Rise()

Set()

Azimuth()

Elevation()

Hour_angle()

Declination()

Opacity()

Windspeed()

Temp()

Humidity()

Tsys()

Local_time()

Mjd()

Day_of_year()

And of course a “shell()” function, to execute commands in the underlying unix system.

