The Effects of the Atmosphere and Weather on Radio Astronomy Observations

> Ronald J Maddalena July 2011

The Influence of the Atmosphere and Weather at cm- and mm-wavelengths

Opacity

- Calibration
- System performance Tsys
- Observing techniques
- Hardware design
- Refraction
 - Pointing
 - Air Mass
 - Calibration
 - Interferometer & VLB phase errors
 - Aperture phase errors

- Cloud Cover
 - Continuum performance
 - Calibration
- Winds
 - Pointing
 - Safety
- Telescope Scheduling
 - Proportion of proposals that should be accepted
 - Telescope productivity

Structure of the Lower Atmosphere

Grossly exaggerated and assuming plane parallel approximation

Index of Refraction is weather dependent:

$$(n_{0}-1) \cdot 10^{6} \approx \frac{77.6 \cdot P_{Total}(mBar)}{T(C) + 273.15} + \frac{3.73 \times 10^{5} \cdot P_{H_{2}O}(mBar)}{(T(C) + 273.15)^{2}} + \dots$$

$$P_{H_{2}O}(mBar) \approx 6.112 \cdot e^{a}$$

where $a \approx \frac{7.62 \cdot T_{DewPt}(C)}{243.12 + T_{DewPt}(C)}$

Froome & Essen, 1969 http://cires.colorado.edu/~voemel/vp.html Guide to Meteorological Instruments and Methods of Observation (CIMO Guide) *(WMO, 2008)*

For plane-parallel approximation:

 n0 • Cos(Elev_{Obs})=Cos(Elev_{True})
 R = Elev_{Obs} - Elev_{True} = (n₀-1) • Cot(Elev_{Obs})
 Good to above 30° only

 For spherical Earth:

$$Elev_{Obs} - Elev_{True} = a \cdot n_0 \cdot \cos(Elev_{Obs}) \cdot \int_1^{n_0} \frac{dn(h)}{n(h) \cdot \sqrt{(a+h)^2 \cdot n(h)^2 - a^2 \cdot n_0^2 \cdot \cos^2(Elev_{Obs})}}$$

a = Earth radius; h = distance above sea level of atmospheric layer, n(h) = index of refraction at height h; n_0 = ground-level index of refraction

See, for example, Smart, "Spherical Astronomy"

Important for good pointing when combining:

- large aperture telescopes
- at high frequencies
- at low elevations
- (i.e., the GBT)
- Every observatory handles refraction differently.
- Offset pointing helps eliminates refraction errors
- Since n(h) isn't usually known, most (all?) observatories use some simplifying model. Example:

$$Elev_{Obs} - Elev_{True} = (n_0 - 1) \cdot Cot \left(Elev_{Obs} + \frac{4.70}{2.24 + Elev_{Obs}} \right)$$

Updated from: Maddalena, GBT memo 112, 1994.

Relative Air Mass

Ratio of column density along line of sight to column density toward zenith

$$AirMass(Elev_{Obs}) = \frac{1}{\int_{0}^{\infty} \rho(h) \cdot dh} \cdot \int_{0}^{\infty} \frac{\rho(h) \cdot dh}{\sqrt{1 - \left(\frac{a}{a+h}\frac{n_{0}}{n(h)}\right)^{2} \cos^{2}(Elev_{Obs})}}$$

Rohlfs & Wilson, "Tools of Radio Astronomy"

Relative Air Mass

Exercise 1: Air Mass and Refraction for $Elev=6^{\circ}$

H (km)	∆H (km)	n	Elev _{Obs}	L _{los} (km)	AirMass
Above At	mosphere	0	6	0	0
34.8	12.00	1.0000019			
17.3	17.55	1.0000341			
11.7	5.557	1.0000764			
8.5	3.260	1.0001105			
6.0	2.465	1.0001442			
4.2	1.778	1.0001745			
2.9	1.308	1.0002056			
2.0	0.956	1.0002374			
1.4	0.565	1.0002771			
1.1	0.315	1.0002872			
0.8	0.251	1.0003108			
Formulae Elev _o	e: _{bbs} = ArcCosl	Cos(Elevobe ^{Prev}	^{vious}) • n / n ^{previo}	ous 1	
L _{los} =	∆H / sin(Elev	V _{Obs})			
AirMa	ass = AirMas	s ^{Previous} + L _{los} / /	١H		

Relative Air Mass

- Not significantly weather dependent
- csc(Elev_{Obs}) breaks down when Elev < 15°

Use instead:

Maddalena & Johnson, 2006

Atmospheric Opacity (τ)

- Hits observations twice:
 - Attenuates the source
 - Adds to received power (T_{sys})

$$T_A = T_R^* \cdot e^{-\tau \cdot AirMas}$$

$$T_{sys} = T_{Rcvr} + f_{Spillover} T_{Ground} + (1 - f_{Spillover}) \cdot \left[T_{CMB} e^{-\tau \cdot AirMass} + T_{R}^{*} \cdot e^{-\tau \cdot AirMass} + T_{Atm} \cdot (1 - e^{-\tau \cdot AirMass}) \right]$$

- Signal-to-noise $\propto T_A/T_{sys}$
- Important for calibration:

$$\frac{\Delta T_R^*}{T_R^*} = \Delta \tau \cdot AirMass + \Delta AirMass \cdot \tau$$

- Some simplifications:
 - Optically Thick ($\tau >> 1$): Last term in T_{sys} becomes T_{Atm}
 - Optically Thin ($\tau \ll 1$): Last term becomes $T_{Atm} \cdot \tau \cdot AirMass$
- Sometimes written as:

$$T_{sys} \approx T_{Rcvr} + T_{CMB}e^{-\tau \cdot AirMass} + T_{Atm} \cdot \left(1 - e^{-\tau \cdot AirMass}\right)$$
$$\approx T_{Rcvr} + T_{CMB} + T_{Atm} \cdot \tau \cdot AirMass$$

Radiative Transfer Through any Atmosphere

Exercise 2: τ , T_{sys}, T_{Atm} and Attenuation for Observation at the Zenith with No Spillover for a 10K Source

H(km)	∆H (km)	κ(Nepers/km)	T _{Layer} (K)	τ	$\sum \tau$	Attenuation	T _A (K)	T _{sys} (K)
Above A	Atmosphere	0		0	0	1.0	10	12.7
34.8	12.00	1.0189e-07	222.34					
17.3	17.55	1.6119e-05	203.99					
11.7	5.557	1.0405e-04	225.49					
8.5	3.260	4.0313e-04	250.79					
6.0	2.465	5.4708e-04	265.69					
4.2	1.778	8.9588e-04	275.99					
2.9	1.308	1.8908e-03	282.59					
2.0	0.956	4.0906e-03	287.89					
1.4	0.565	8.2437e-03	287.79					
1.1	0.315	0.0121247	288.69					
0.8	0.251	0.0169950	288.59					
		$T_{Atm} = (T_{c})$, _α - Τ _Λ - Τ _{ΟΜΒ}	• exp(-	Στ)) / (1	- exp(- Στ)) =		
		Aun v s		່ ່ Tc	$tal T_{svs} =$	$T_{svs} + T_{rovr} =$		
Formula	ae:				<u> </u>			
$\tau = \kappa$	с • <u></u> АН							
Atte	nuation = exp	ρ(-τ)						
Τ _Δ =	T _A Previous • A	tenuation						

 $T_{sys} = Tsys^{Previous} \cdot Attenuation + T_{Layer} \cdot (1 - Attenuation)$

Use: T_{rcvr} = 15 K, T_{CMB} = 2.7 K

Tippings to Determine τ

Requires knowing T_{Atm} and f_{Spillover} and good calibration
 $\Delta T_{cal}/T_{cal} = \Delta T_{Sysl}/T_{Sys} = \Delta \tau/\tau$

Definition of T_{Atm}

$$T_{Atm} \approx \frac{\int \kappa(h) \cdot T(h) \cdot dh}{\int \kappa(h) \cdot dh} = \frac{\int \kappa(h) \cdot T(h) \cdot dh}{\tau}$$

Thus, the slope in Tipping Curve $\approx T_{Atm} \tau \approx \int \kappa(h) \cdot T(h) \cdot dh$

The slope in a tipping curve really isn't related to the opacity!!

Try instead:

; Calculates an estimate to Tatm from ground air temperature and frequencies.

; Only appropriate for freqs < 50 GHz. The rms uncertainty in my model is 3.5 K ; Maddalena & Johnson (2005, BAAS, Vol. 37, p.1438).

; freqs : list of frequencies in MHz ; TempK: ground temperature in K

function quickTatm, freqs, TempK

f = freqs/1000.

```
 A = 259.691860 - 1.66599001*f + 0.226962192*f^{2} - 0.0100909636*f^{3} + 0.00018402955*f^{4} - 0.00000119516*f^{5} \\ B = 0.42557717 + 0.03393248*f + 0.000257983*f^{2} - 0.0000653903*f^{3} + 0.00000157104*f^{4} - 0.0000001182*f^{5} \\ return, A + B*(TempK-273.15) \\ \end{tabular}
```

Quick, Simple, and Accurate τ

Quick, Simple, and Accurate τ

Invert T_{sys} equation to solve for attenuation

$$e^{-\tau \cdot AirMass} = \frac{\left(1 - f_{Spillover}\right) \cdot T_{Atm} - T_{sys} + T_{Rcvr} + f_{Spillover}T_{Ground}}{\left(1 - f_{Spillover}\right) \cdot \left(T_{Atm} - T_{CMB} - T_{R}^{*}\right)}$$

$$\approx \frac{T_{Atm} - T_{sys} + T_{Rcvr}}{T_{Atm} - T_{CMB}}$$

At low frequencies and low Air Mass:

$$\tau \approx \frac{T_{sys} - T_{Rcvr} - T_{CMB}}{T_{Atm}AirMass}$$

Every single observation tells you its opacity !!

Just need to use your

Opacity vs Frequency

Opacities from Various Atmosphere Components

Opacities from Various Atmosphere Components

Opacities from Various Atmosphere Components

Precipitable Water Vapor (PWV) vs Opacity

Graphs suggest that τ ~ A + B • PWV(mm) Where A and B are frequency dependent. See Marvil (2010) EVLA Memo 143 for values of A and B for 1-50 GHz

But, estimates can be in error if there are hydrosols or rain present.

Precipitable Water Vapor from Ground-Level Conditions

 $PWV_{H2O} (mm) \sim Scale Height (km) \cdot 216.7 (mBar) \cdot P_{H20} / T_{Ground} (K)$ Where Scale Height ~ 2.2 km Butler (1998), "MMA Memo 237"

But, it's a very rough value only and more useful for site statistics and not really suitable for calibration

Affects of Winds

Force = Air Density • Wind Speed²

• Hooke's Law: Force ∞ Displacement $\infty \Delta \theta$

Telescope Beams are Gaussian

$$\frac{G}{G_0} = e^{-a \cdot \Delta \theta^2 \cdot Frequency^2} = e^{-b \cdot Velocity^4 \cdot Frequency^2}$$
$$\frac{t_{Best}}{t_{Needed}} = \eta_{Tracking} = \left(\frac{G}{G_0}\right)^2 = e^{-2b \cdot Velocity^4 \cdot Frequency^2}$$

For small $\Delta \theta$: $\eta_{Tracking} = (1 - b \cdot Velocity^4 \cdot Frequency^2)^2$

Condon & Balser (2011), DSS memo 5

Weather Forecasting for Radio Astronomy

The standard products of the National Weather Service (other than winds, cloud cover, precipitation, and somewhat PWV) do not serve radio astronomy directly.

But, the NWS products be reprocessed to generate forecast values that are more useful for radio astronomy.

Vertical profiles

- Atmospheric pressure, temperature, and humidity as a function of height above a site (and much more).
- Derived from Geostationary Operational Environmental Satellite (GOES) soundings and, now less often, balloon soundings
- Generated by the *National Weather Service*, an agency of the *NOAA*.

Bufkit, a great vertical profile viewer http://www.wbuf.noaa.gov/bufkit/bufkit.html

Vertical Profiles

65 layers from ground level to 30 km
 Stratospheric (Tropapause ~10 km)

- Layers finely spaced (~40 m) at the lower heights, wider spacing in the stratosphere
- Available for major towns (Elkins, Hot Springs, Lewisburg)

Three flavors of forecasts:

- 1 hr and 12 km resolution, 12 hr range, 1 hr updates
- 1 hr and 12 km resolution, 84 hr range, 6 hr updates
- **3** hr and 35 km resolution, 120 hr range, 12 hr updates

Bufkit files available for "Standard Stations"

Basics of Atmospheric Modeling

Liebe, 1985, "Radio Science", Vol 20, p. 1069.

Maddalena (<u>http://www.gb.nrao.edu/~rmaddale/Weather</u>)

h	т	Ρ	DP	CFR	Δh	ρ _{Water}	ρ _{Dry}	n	ΔElev	К _{Dry}	к _{н20}	к _{н20}	к ₀₂	K _{Hydrosol}	K _{Total}	ΔT_{Sys}
				L							Cont	Line		S		
30 km																
920 m																
880 m																
									R						τ	T _{Sys}
															T _{At}	tm

The Accuracy of Radio-Astronomy Forecasts is High

The Reliability of Radio-Astronomy Forecasts is High

Hr	R	rms (mm)
6	0.985	1.76
12	0.978	2.11
18	0.972	2.41
24	0.968	2.58
30	0.960	2.91
36	0.952	3.15
42	0.942	3.46
48	0.932	3.73
54	0.922	4.03
60	0.910	4.35
66	0.898	4.64
72	0.885	4.95
78	0.875	5.19

User Software: cleo forecasts

Eile Help Model NAM © GFS Sites Eile Help File Hel	ne
Model NAM ☆ GFS Sites Elkins HotSprings Eile Help Model Calculations Model Lewisburg Time Series Curves/Curves Model Local Date and Time Stat Date 07/31/2008 Model Lewisburg Time Series Curves/Curves Elkins HotSprings Lewisburg Thu Fri Fri Stat Stat Stop Date 08/08/2008 Desired UT Date & Time Hour 12 * Particip Lewisburg Calculations Desired UT Date & Time Hour 12 * Target Target Target Select Elevations (Deg) and Freq Desired UT Date & Time Refaction Oronud Values Frequency Curves Target Target	ne
NAM ☆ GFS Weather Forecasts : Configure tmpoTime tmpoTime tmpoTime tmpoTime humidT Sites Eile Help AirMassTime AirMassTime AirMassTime AirMassTime humidT UT Date & Time Range Sites Sites Local Date and Time Local Date and Time NAM ☆ GFS Sites Sites Local Date and Time Thu Fri Fri Sat Sat Sat Sun Sun Mon Start Date 07/31/2008 Fri Fri Sat Sat <t< th=""><th></th></t<>	
Sites Weather Forecasts : Configure AirMassDerivTime Elkins HotSprings File Help NAM GFS Start Date 07/31/2008 Stop Date 08/08/2008 Date 08/08/2008 Desired UT Date & Time Desired UT Date & Time Hour 12 Refraction Ground Values Frequency Curves Frequency Curves Calculations Desired UT Date & Time Date 07/31/2008 Hour 12 Select Elevations (Deg) and Freq Frequency Curves	
Elkins HotSprings Eile Help Time Series Curves Model Local Date and Time UT Date & Time Range NAM & GFS Sat Sat Sun Sun Mon Start Date 07/31 08/01 08/02 08/02 08/02 08/02 08/02 08/02 08/02 08/02 08/02 08/02 08/02 08/02 08/03 08/04 08/04 12:00 00:00 10:00 10:00 00:00 10:00 00:00 10:00 00:00 10:00 00:00 10:00 00:00 10:00 00:00 10:00 00:00 10:00 00:00 10:00 00:00 10:00 00:00 10:00 00:00 10:00 00:00 10:00 00:00 10:00 00:00 10	
Time Series Curves Model UT Date & Time Range NAM & GFS Sites Sites Elkins HotSprings Lewisburg Calculations Desired UT Date & Time Desired UT Date & Time Date 07/31/2008 Hour 12 Frequency Curves <	
UT Date & Time Range NAM	
Start Date 07/31/2008 Sites Elkins HotSprings Lewisburg Time Series Curves/Curves for a Specific UT Date Time Desired UT Date & Time Date 07/31/2008 Hour 12 = Parts for the Constitutions (Deg) and Freq Frequency Curves For a Specific UT Date Date Date Date 07/31/2008 Hour 12 = Textem Parts for the Constitution of the Constitut	
Stop Date 08/08/2008 Elkins HotSprings Lewisburg Calculations Calculations Desired UT Date & Time Date 07/31/2008 Hour 12 Select Elevations (Deg) and Freq Frequency Curves	
Calculations Calcu	HotSprings
Opaoity Air Mass Refraction Ground Values Select Elevations (Deg) and Freq Frequency Curves	10%
Refraction Ground Values Date 07/31/2008 Hour 12 Select Elevations (Deg) and Freq Frequency Curves	50%
Select Elevations (Deg) and Freq Frequency Curves	75% 90%
Descrite Descrite Rel Eff Tors Tate () 1 f	
Elev for Tsys Caloul	
Elev for Refract & Air Mass Calcul	
- Elevation Curves	
Opacities to Include: Refraction Tsystem Rel Eff Tsys Air I 60%	
Hydrosols H2O C Elevation Range (Deg): Start 5 m Stop Stop 90 m H2O C	
Image: Dry Air Continuum O2 Lin Height Curves 08/01 08/01 08/02 08/03 08/03 08/04 08/04	
Refraction UT Date and Time	
Select Elevations (Deg) and Frequencies (GHz) Continue	
Freqs.	
Save Results to Files Opacities to Include:	
Qi 📕 Hydrosols 🔄 H2O Continuum 🖃 H2O Line	
Dry Air Continuum 202 Line	
Save Results to Files Process	
Quit	

Web Page Summaries

- http://www.gb.nrao.edu/~rmaddale/Weather
- 3.5 and 7 day forecasts.
- Provides:
 - Ground weather conditions
 - Opacity and T_{Atm} as a function of time and frequency
 - \Box T_{sys} and RESTs as functions of time, frequency, and elevation
 - Refraction, differential refraction, comparison to other refraction models
- Weather.com forecasts
- NWS alerts
- Short summary of the modeling and list of references
- Overview (Pizza) Plots

Overview (Pizza) Plots and GBT Scheduling

Overview: Cloud Coverage and Conditions Unsuitable for Continuum Observing

Local Date and Time

Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue
07/12	07/13	07/14	07/15	07/16	07/17	07/18	07/19
00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00
<u>n lu</u>	uulu	mln	<u>iiilii</u>	<u>iili</u> i	mili	ulu	L
						Musta	ing 30° 45° 90°
						Optical	Cloude
r r p i r r						11111	TTT
00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00
07/12	07/13	07/14	07/15	07/16	07/17	07/18	07/19
		UT	Date a	nd Time			

Pizza Plots and GBT Scheduling

GBT Dynamic Scheduling

- Uses cm- and mm-wave weather forecasts to determine the optimum way to schedule projects for the next 2 days
- Additional factors:
 - Project ranking
 - Availability of hardware
 - Observer blackouts dates/times
 - Allows for multiple observers on a project
 - Proposal pressure vs frequency and LST range
- Observers are provided with emails when they are scheduled.
- If remotely observing, observers use VNC to conduct their experiment.
- Before one can remotely observe, one must first observe locally so that we can ensure remote observing will be fruitful.
- For more details, see:
 - <u>http://science.nrao.edu/gbt/scheduling/dynamic.shtml</u>
 - <u>Condon & Balser (2011), DSS memo 4</u>
 - <u>Condon & Balser (2011), DSS memo 5</u>

DSS Project Weather 'Scoring'

Product of three measures of observing efficiency:

$$\eta_{Atmosphere} = \left(\frac{T_{SYS}^{Best} \cdot e^{\tau^{Best} \cdot AirMass}}{T_{SYS}^{Forecasted} \cdot e^{\tau^{Forecasted} \cdot AirMass}}\right)^2 \propto \frac{t^{Best}}{t^{Needed}} \leq 1$$

η_{Surface}: Loss in observing efficiency due to degradation of surface (<1 during the 'day', =1 at night)
 η_{Tracking}: Loss in observing efficiency due to winds (outlined above) plus servo system errors.

The Influence of the Atmosphere and Weather at cm- and mm-wavelengths

- Opacity
 - Calibration
 - System performance Tsys
 - Observing techniques
 - Hardware design
- Refraction
 - Pointing
 - Air Mass
 - Calibration
 - Interferometer & VLB phase errors
 - Aperture phase errors

- Cloud Cover
 - Continuum performance
 - Calibration
- Winds
 - Pointing
 - Safety
- Telescope Scheduling
 - Proportion of proposals that should be accepted
 - Telescope productivity