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Abstract

The traditional methods for calibrating single-dish radio telescopes assume that the system gain is linear: detected power is taken to be proportional to the power incident on the antenna. 
The assumption is wrong at some low level and noticeably breaks down when observing an object that has a large dynamic range. The high sensitivity, clean beam, and very stable 
electronics of the Green Bank Telescope (GBT) allow us to detect nonlinearities that would be masked in most other radio telescopes. In particular, the signal processing components of the 
GBT produce an output power that exhibits at least a quadratic dependence on incident power. Our study indicates that measuring and compensating for the nonlinearity is rather trivial and 
improves calibration when observing objects with a larger dynamic range. Once measured, the nonlinearity is shown to be stable over a typical observing run (~6-8 hours) with evidence of 
stability for up to several weeks.

We also investigated ways to improve spectral-line calibration and baseline shape when observing over a band that is many GHz wide, as is typical with many high frequency GBT projects. 
We have found that baselines are seriously degraded when using the traditional methods of calibration via scalar values for the system temperature and calibration noise diode that are 
averaged over the entire bandwidth of the observations. System calibration and baselines are shown to be substantially improved when we use noise diode and system temperature values 
that have a frequency resolution of a few MHz.
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Figure 3:  Tsys vs. Frequency for 3C147.  Nonlinear 
solution is shown in blue, linear in red.

Figure 4:  TA vs. Frequency for 3C147.  Scalar-
derived  value in grey, linear and nonlinear in blue and 
green, and catalog-derived spectrum is shown in red.

Figure 5:  T
sys

 vs. Frequency, varying calibration age.  
Red represents t = 0h, Black represents 4h.

Figure 6:  Tsys vs Frequency.  Two-hour old 
calibration shown in green, one-month in red.

Figure 7:  TA vs Frequency, -3dB attenuation at the IF 
rack.  Nonlinear calibration is in green.

Figure 8:  TA vs. Frequency, -6dB attenuation at IF 
rack.  Nonlinear calibration is in green.

Analysis/Discussion

Our tests used point sources of moderate strength (~20K).  Fig. 3 shows the frequency 
structure of Tsys.  Similar plots were derived for Tcal.  Fig. 4 compares the baseline and 
calibration accuracy when one uses a linear scalar approximation vs. a linear vector and 
a 2nd order approximation.

We explored the time span over which one has to re-measure γ.  Calibration shifts of 2.5- 
5% were observed after 4h (Fig 5). Fig 6 shows calibration was unchanged (5%) even 
after one month.

Figs. 7 and 8 show how changes in input power affect calibration.  The changes in Tsrc 
suggest that a 2nd-order approximation holds for up to 3 dB changes in input power.

Conclusions

Vector calibration results in substantially improved baseline shapes and calibration 
accuracy over the traditional scalar approximations

A 2nd-order, nonlinear approximation results in slightly improved calibration over traditional 
linear approximations.  However, 2nd-order is not sufficient for high-dynamic range 
observations.

Vector calibration and second-order gain coefficients remain fairly constant over a typical 
observing run, and show very little variation after one month.

Nonlinear gain is produced by many system components and is not easily isolated.  
However, the affects can be easily measured and removed for most classes of 
observations.

Use of vector calibration results in increased spectral noise  at levels as high as 10x the 
noise level for the averaged calibration.  This may obscure fine/weak spectral lines on the 
MHz scale

Figure 1:  Measured synchrotron spectrum of 3C295 (grey) 
and catalog spectrum (red)
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Introduction

Current data reduction techniques used on the Green Bank Telescope (GBT) and elsewhere 
assume a linear power response curve and use scalar calibration coefficients.  The stability 
of the GBT electronics and large instantaneous bandwidths allow us to investigate the 
validity of these approximations.  

Scalar calibration results in baseline artifacts not associated with the source (Fig. 1).  
Studies by Johnson et. al. suggested one could easily measure the nonlinearity of the GBT 
(Fig. 2).

Our study sought to (1) implement a frequency-dependent calibration temperature (Tcal) to 
improve spectral baselines and (2) introduce a nonlinear correction to improve the 
calibration.  In addition, tests were performed to determine calibration stability.

Theory

Calibration coefficients and system temperatures, Tsys, are traditionally determined from the 
detected voltages of measurements of point sources with cataloged intensities (SIG) and 
measurements of nearby blank-sky (REF).  All GBT receivers have a noise diode whose 
output power, Tcal , is assumed to be extremely stable.  We’ll use subscripts of on and off 
to indicate the state of the diode.   Traditionally,  detected voltages are assumed to be linear 
with source strength. 

Tcal and (1) are then be applied to observations of other sources.  Calibration coefficients 
are traditionally averaged over frequency.

However, over the GHz wide bandwidths of the GBT, there might be significant frequency 
structure in the denominator of the last equation which cannot be cancelled out by a scalar 
Tsys.   Instead, for best baselines we need to remove the averaging and employ a 
frequency-dependent (vector) Tsys.

Next, to determine the affects of the known non-linearities (Fig 2), we have added a 
quadratic gain term to our calibration equations:

As before, γ(1), γ(2)  are determined by observations of an intensity calibrator and then applied 
to the observer’s source:
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Figure 2:  Residuals (Resids) vs. Input Power.  Residuals 
should be constant if the measured power is a linear function 
of the antenna input power.  Discontinuity suggests that 
higher-order gain terms may be necessary.  See below for 
definitions of quantities
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