High Precision Calibration of Wide Bandwidth Observations with the GBT

Ronald J Maddalena NRAO, Green Bank July 26 2007

Shelly Hynes (Louisiana School for Math, Science and the Arts) Charles Figura (Wartburg College) Chelen Johnson (Breck School) NRAO-GB Scientific and Engineering staff

Typical Position-Switched Calibration Equation

$$S(\mathbf{v}) = \left(\frac{2k}{\eta_{A}(\mathbf{v}, Elev) \cdot Area_{p}}\right) \cdot T_{A}(\mathbf{v}) \cdot e^{\tau(\mathbf{v}, t) \cdot A(Elev, t)}$$
$$T_{A}(\mathbf{v}) = \left(\frac{Sig(\mathbf{v}) - Ref(\mathbf{v})}{Ref(\mathbf{v})}\right) \cdot T_{Sys}^{Ref}$$
$$T_{Sys}^{Ref} = \left\langle\frac{Ref(\mathbf{v})}{Ref_{On}(\mathbf{v}) - Ref_{Off}(\mathbf{v})}T_{Cal}(\mathbf{v})\right\rangle_{BW}$$

A(Elev,t) = Air Mass $\tau(v,t) = Atmospheric Zenith Opacity$ $T_{cal} = Noise Diode Temperature$ Area = Physical area of the telescope $\eta_A (v,Elev) = Aperture efficiency (point sources)$ $T_A (v) = Source Antenna Temperature$

S(v) = Source Flux Density
Sig(v), Ref (v) = Data taken on source and on blank sky (in units backend counts)
On,Off = Data taken with the noise diode on and off
T_{sys} = System Temperature averaged over bandwidth

Position-Switched Calibration Equation

$$S(v) = \left(\frac{2k}{\eta_{A}(v, Elev) \cdot Area_{p}}\right) \cdot \left(\frac{Sig(v) - Ref(v)}{Ref(v)}\right) \left(\frac{Ref(v)}{Ref_{On}(v) - Ref_{Off}(v)}T_{Cal}(v)\right) \cdot e^{\tau(v) \cdot A(Elev)}$$

Sources of uncertainties

$$\left(\frac{\Delta S}{S}\right)^2 = \left(\tau \cdot \Delta A\right)^2 + \left(A \cdot \Delta \tau\right)^2 + \left(\frac{\Delta T_{cal}}{T_{Cal}}\right)^2 + \left(\frac{\Delta \eta}{\eta}\right)^2$$

- 10-15% accuracy have been the 'standard'
- Usually, errors in T_{cal} dominate
- Goal: To achieve 5% calibration accuracy without a significant observing overhead.

Air Mass Estimates

Depends upon density and index of refraction as a function of height

But, how can one get this information?

Vertical Weather Data

- Provided by the national weather services via FTP
- 60 hr forecasts (ETA model), updated every 12 hrs
- For each hour, provides as a function of *height above the ground*
 - Temperature, Pressure, Dew Point, Cloud Cover,
- ~40 heights that extend well into the stratosphere
- One can derive *as a function of height*:
 - Density
 - Index of refraction
 - Absorption coefficient (dry air, water continuum & line, oxygen line, hydrosols) (Liebe model)

Vertical Weather Data

Air Mass Estimates

- Air Mass derived from the vertical values of density & index of refraction.
- For 1% calibration error, require A to ~0.1

Air Mass for 5/1/2004 to 5/1/2005 at 5° Elevation

- Probably should use weather dependent Air Mass for elevations below 5 deg
- Probably can ignore weather dependency above 5 deg.

Air Mass Estimate

- Air Mass traditionally modeled as 1/sin(Elev)
- For 1% calibration accuracy, must use a better model below 15 dea.

$$A = -0.0234 + \frac{1.014}{\sin\left(Elev + \frac{5.18}{Elev + 3.35}\right)}$$

- Good to 1 deg
- Use 1/sin(Elev) above 60 deg
- Coefficients are site specific, at some low level

Air Mass Estimates

Opacity Estimates

• Vertical weather data provides absorption as a function of height

$$\tau(\mathbf{v},t) = \int_{0}^{\infty} \left(\kappa_{Dry}(\mathbf{v},t) + \kappa_{O2}(\mathbf{v},t) + \kappa_{Water_cont}(\mathbf{v},t) + \kappa_{water_line}(\mathbf{v},t) + \kappa_{hydrosols}(\mathbf{v},t) \right) dH$$

$$T_{Sys}(Elev, v, t) \cong T_{rcvr}(v) + T_{spill}(Elev) + T_{cmb}e^{-\tau(v, t)\cdot A(Elev)} + \int_{0}^{\tau}T(H, t)\cdot e^{\tau(h, v, t)}d\tau$$

Opacity Estimates

- Are derived opacities accurate? Comparisons using tipping radiometers have difficulties
 - Must do multiple tips for wideband observations
 - Tips take up telescope time
 - Requires knowing T_{cal} to high accuracy, which requires knowing τ .
 - Some dedicated tippers do not provide enough information to estimate τ near the 22 GHz water line
 - Requires a representative T_{Atm} that is good to ~5 K

$$T_{Atm} \approx \frac{\int \kappa(H) \cdot T(H) \cdot dH}{\int \kappa(H) \cdot dH}$$

Comparison of measured and estimated 22 GHz Tsys

- Traditionally used hot-cold load measurements
 - Provide ~10% accuracy
 - Frequency resolution sometimes wider than frequency structure in T_{rcvr} or T_{cal}
 - Time consuming
 - Systematics/Difficulties
 - Loads must be opaque
 - Frost forming on LN₂ loads
 - Linearity (T_{Hot} >> T_{Cold})
 - Observers can't do there own Hot-Cold tests

- Instead, we recommend an On-Off observation
 - Use a point source with known flux -- polarization should be low or understood
 - Use the same exact hardware, exact setup as your observation. (i.e., don't use your continuum pointing data to calibrate your line observations.)
 - Observations take ~5 minutes per observing run
 - Staff take about 2 hrs to measure the complete band of a high-frequency, multi-beam receiver.
 - Resolution sufficient: 1 MHz, sometimes better
 - Accuracy of ~ 1%, mostly systematics.

$$S(v) = \left(\frac{2k}{\eta_{A}(v, Elev) \cdot A_{p}}\right) \cdot \left(\frac{Sig(v) - Ref(v)}{Ref(v)}\right) \left(\frac{Ref(v)}{Ref_{On}(v) - Ref_{Off}(v)}T_{Cal}(v)\right) \cdot e^{\tau(v) \cdot A}$$

Remove Averaging, Solve for Tcal

$$T_{Cal}(v) = \frac{\eta_A(v, Elev) \cdot Area_p}{2k \cdot e^{\tau(v) \cdot A}} \left(\frac{Ref_{On}(v) - Ref_{Off}(v)}{Sig(v) - Ref(v)} \right) \cdot S(v)$$

Created with PSI-Plot, Tue May 10 14:36:23 2005

X_LC_Rcs.pgw Created with PSI-Plot, Tue May 10 16:59:49 2005

S_LL_Ycs.pgw

Position-Switched Calibration Equation

$$S(v) = \left(\frac{2k}{\eta_{A}(v, Elev) \cdot Area_{p}}\right) \cdot \left(\frac{Sig(v) - Ref(v)}{Ref(v)}\right) \left(\frac{Ref(v)}{Ref_{On}(v) - Ref_{Off}(v)}T_{Cal}(v)\right) \cdot e^{\tau(v) \cdot A(Elev)}$$

Baseline structure

$$Baselines(v) = \frac{T_A + T_{atm}^{Sig} - T_{atm}^{Ref}}{\left\langle T_{sys} \right\rangle_{BW}} \cdot \left\{ \left\langle T_{rcvr} + \frac{T_{cal}}{2} \right\rangle_{BW} - T_{rcvr}(v) - \frac{T_{cal}(v)}{2} \right\}$$

Assumption of linearity

 $S \propto Sig - Ref$

Baseline Structure

Baseline Shapes
$$S(v) = \left(\frac{2k}{\eta_{A}(v, Elev) \cdot A_{p}}\right) \cdot \left(\frac{Sig(v) - Ref(v)}{Ref(v)}\right) \left\langle \frac{Ref(v)}{Ref_{On}(v) - Ref_{Off}(v)} T_{Cal}(v) \right\rangle \cdot e^{\tau(v) \cdot A}$$

Remove Averaging – Vector Calibration

$$S(v) = \left(\frac{2k}{\eta_{A}(v, Elev) \cdot A_{p}}\right) \cdot \left(\frac{Sig(v) - Ref(v)}{Ref_{On}(v) - Ref_{Off}(v)}\right) \cdot T_{Cal}(v) \cdot e^{\tau(v) \cdot A}$$

- Traditional equation OK for narrow bandwidth observations
- Traditional provides good calibration only at band center
- Vector algorithm provides good calibration across wide bandwidths
- Vector algorithm is substantially nosier when $T_A \neq 0$

$$\sigma^{2} \approx \frac{1}{BW \cdot t} \left(T_{A}^{2} + T_{Sys}^{2} + \frac{T_{Sys}^{2}T_{A}^{2}}{T_{Cal}^{2}} \right)$$

Smooth Ref_{on}-Ref_{Off} – use Savitzky-Golay smoothing

Non-linearity

If system is linear,

•
$$P_{out} = B * P_{in}$$

- $(Sig_{On}-Sig_{Off}) (Ref_{On}-Ref_{Off}) = 0$
- Model the response curve to 2nd order:

•
$$P_{out} = B * P_{in} + C * P_{in}^2$$

- Our 'On-Off' observations of a calibrator provide:
 - Four measured quantities: Ref_{off}, Ref_{on}, Sig_{off}, Sig_{on}
 - T_A From catalog
 - Four desired quantities: B, C, Tcal, Tsys
- It's easy to show that:
 - $C = [(Sig_{on} Sig_{off}) (Ref_{on} Ref_{off})]/(2T_A T_{cal})$
- Thus:
 - Can determine if system is sufficiently linear
 - Can correct to 2nd order if it is not

Non-linearity

Summary

- To obtain few percent calibration accuracy
 - Wide bandwidths require frequency dependent opacities, efficiencies, Tsys, andTcal.
 - New weather-independent model for air mass is usually sufficient
 - Opacities from vertical, forecasted weather data sufficient for medium to low-opacity conditions
 - Simple observation of calibrator provides high accuracy, high frequency resolution Tcal.
 - Assumptions of traditional on-off calibration algorithm introduces baseline shapes for wide bandwidth observations. Should use 'vector' algorithms.
 - 2nd order non-linearity -- measurable (by-product of Tcal observation) and correctable. Might be significant.

Typical Position-Switched Calibration Equation

$$S(v) = \left(\frac{2k}{\eta_{A}(v, Elev) \cdot Area_{p}}\right) \cdot T_{A}(v) \cdot e^{\tau(v,t) \cdot A(Elev,t)}$$
$$T_{A}(v) = \left(\frac{Sig(v) - Ref(v)}{Ref(v)}\right) \cdot T_{Sys}^{Ref}$$
$$T_{Sys}^{Ref} = \left\langle\frac{Ref(v)}{Ref_{On}(v) - Ref_{Off}(v)}T_{Cal}(v)\right\rangle_{BW}$$

 $T_{Sys}^{\text{Ref}}\left(Elev, v, t\right) \cong T_{rcvr}\left(v\right) + T_{spill}\left(Elev\right) + T_{cmb}e^{-\tau\left(v, t\right)\cdot A\left(Elev\right)} + T_{Atm}\left(v, t\right)\cdot\left(1 - e^{-\tau\left(v, t\right)\cdot A\left(Elev, t\right)}\right)$

 $\begin{aligned} A(Elev,t) &= Air Mass \\ \tau(v,t) &= Atmospheric Zenith Opacity \\ Area &= Physical area of the telescope \\ \eta_A(v,Elev) &= Aperture efficiency (point sources) \\ T_A(v) &= Source Antenna Temperature \\ S(v) &= Source Flux Density \\ Sig(v), Ref(v) &= Data taken on source and \\ on blank sky (in units backend counts) \end{aligned}$

On,Off = Data taken with the noise diode on and off T_{sys} (v,Elev,t) =System Temperature T_{CMB} = Cosmic Microwave Background T_{rcvr} (v) = Receiver Temperature T_{spill} (Elev) = Antenna Spillover T_{Atm} (v,t) =Representative temperature of the atmosphere