The user interfaces for the NRAO-Green Bank Telescope

Ronald J. Maddalena"
National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV USA

ABSTRACT

The NRAO-Green Bank Telescope, the world's largest, fully steerable radio telescope, is now in routine use by visiting
astronomers. The telescope is unique because of its offset optical design and its complex suite of state-of-the-art
mnstruments. To exploit the full powers of the system, observers and staff members require intuitive user interfaces. We
will demonstrate one of the various graphical user interfaces that have been built for the telescope. The interface, written
in Tel/Tk and used predominately by staff engineers, telescope operators, and programmers, is designed for very detailed
monitoring and debugging of telescope components. The interface lies on top of an object-oriented control system that
provides the GUI builder a set of software methods that is the same for every GBT device, {rom receivers to detectors.
The uniform set of methods reduces the work normally needed in creating a high-level user interface and allows for the
creation of interfaces in a range of programming languages.

Keywords: Radio telescope, control software, Tcl/Tk, user interfaces

INTRODUCTION

The Robert C. Byrd Green Bank Telescope (GBT)"™ is the world’s largest, fully steerable, single-dish radio telescope
with a projected aperture of 100 m. Since its dedication in August 2000, the telescope has been undergoing
commissioning as well as hosting routine astronomical observing. The uniqueness and versatility of the GBT arises not
only from its offset optics, plainly evident in Figure 1, but also from many of the other components of the telescope.
This includes an active surface® a large suite of state-of-the-art receivers and detectors or backends, and a laser
metrology system for real-time measurement of the pointing of the telescope and the shape of its reflector.

Figure 1: The 100-m Green Bank Telescope (left) towers over the NRAQ 43-m telescope (rght).

Almost every hardware component of the telescope is controlled and monitored almost exclusively through digital
interfaces and their accompanying software. This heterogeneous set of telescope components requires a versatile and
powerful software system that ties everything together to form a single, coordinated system. For almost every piece of
hardware, this software system, called “Ygor™, must be able to control all hardware components, provide monitoring

" rmaddale@nrao.edu; phone 304 456-2207, fax 304-456-2170; http:/www.gb.nrao.edu

feedback, and handle messages and alarms. On top of the control system must be various user interfaces that provide
levels of control or monitoring suitable for their intended users. Section 2 provides a briel overview of the “Ygor”
monitor and control system and, in particular, the well-designed software communication interface between “Y gor” and
user interfaces.

Section 3 describes the graphical user interface designed for support staff, engineers, programmers, and telescope
operators. The interface, called “The Control Library for Engineers and Operators” (CLEO), was written in Tcl/Tk by
one part-time staff member and two part-time undergraduates. Hven though CLEO provides sophisticated controls and
monitoring points for almost every aspect of the telescope, development was essentially on schedule with extremely low
cost. Maintenance and on-going development amount to less than 5% of a staff member’s time and user feedback has
been extremely positive. As discussed below, CLEO’s success is partly due to the well-designed software
communication interface between it and the underlying “Ygor” control system and partly due to the chosen technology.

2. CONTROL SOFTWARE ARCHITECTURE

Since the GBT monitor and control hardware and software system, “Ygor”, is described in depth elsewhere (for
example, see references 5-8 and http://www.gb.nrao.edu/GBT), I will concentrate here on the broad details of “Ygor”
and how the software architecture of “Ygor” interacts with user interfaces.

User Interface 1 User Interface 2 Tl Tk (CLED)

RPC Layer RPC Layer Segeste

Manager Mianager
Single Board T o = = Single Board
Conputer (I\.-'Ianager Ivlanager (I\.-'Ianager Cormputer
I | J o\ | / | / |
Hardware) . : Hardware
Dewice Sélg].& Board Single Board Single Board Detice
orputer Cormputer Corpter

Hardware Hardware Hardware
Device Device Device

Figure 2: User interface and “Ygor™ architecture. Note that three of the example managers are children of a coordinator while two
other managers have no children. Two generic and the Tcl/Tk (CLEO) user interface technologies are diagrammed. Each technology
requires its own RPC layer, which, in the case of CLEQ, is called segeste.

The setup and operation of all devices, from LF. electromechanical switches to the antenna servo system, are through
software modules called managers. Managers are organized in a hierarchy where a parent manager coordinates children
managers that have some common functionality. Most importantly for the builder of a user interface, every manager,
and thus every device regardless of its design or use, presents to the builder of the user interface the same

communication interface, the same commands and methods. Every manager has entities called parameters (for setting
control values) and samplers (for monitoring) which, although the list of parameters and samplers may differ between
managers, are always dealt with in the same fashion

In addition to managers, “Ygor”, through a separate communication protocol, provides messages that can be displayed
by a user interface. Messages are strings of text that are generated throughout the “Ygor™ programs to describe all types
of expected and unexpected events. The “Ygor” system even provides to the user interfaces a database that describes
the cabling between hardware components.

As shown in Figure 2, for every technology (Tel, Perl, Java, etc.) in which a user interface is desired, a special but small
software module needs to be created that translates the RPC calls used by the “Ygor” system into something which the
technology understands. How this translation happens is completely transparent to the builders of the user interfaces.
And, since the underlying communications are identical, usually a person adept at writing code in, for example, Perl and
Tcl, can use his or her experience writing GBT interface code in Perl to write GBT interface code in Tcl.

The low cost for developing user interfaces for the GBT is partly a byproduct of this software architecture. In essence,
the software architecture allows GUI builders to devote their time almost exclusively on how best to represent a
particular control or monitor feature of the GBT without concerning themselves with the details of how to communicate
with an individual device. Since all devices, from the antenna through receiver to detector, use the same software
‘methods,” the heterogeneous GBT hardware looks to the GUI builder like a homogeneous class of objects. Only the
‘attributes’ of different devices are different.

Before I describe CLEO, I will outline the significant features of “Ygor” that user interfaces commonly exploit and
which further help reduce development costs.

2.1 Manager commands

Every manager provides to a user interface the same set of commands. For example, a manager may be placed in Off,
Standby, or Ready states by the commands off, standby, and on respectively. The commands start and activate cause
the software to actually command the hardware. The command start causes an observation to begin while activate
causes the manager to do everything possible to get ready for an observation short of actually starting the observation.
The commands abort and stop, where abort 1s a stronger version of stop, cause a manager to returmn to Ready.

Additionally, user interfaces can take advantage of certain introspective commands provided by every manager. For
example, one can ask a manager to return its list of parameter names or sampler names. Managers provide to the user
interfaces for every parameter and sampler a description that is usually about a sentence long, the range of legal values,
and the units of a parameter (e.g., K, Volts, dBm). A typical use of this information by a user interface would be to
create the text of the online help that accompanies a widget, to properly label a widget, or to provide error checking.

2.2 Manager Parameters

Hach manager contains a set of parameters for controlling the underlying device. As far as a builder of a user interface 1s
concerned, the only difference between managers is the set of parameters defined for that manager. To make matters
even simpler, “Ygor” provides a subset of parameters that are built into all managers. For example, the state parameter
describes the current state of a manager and may have the values of: Off, Standby, Operating, Ready, Activating,
Committed, Running, Stopping, or Aborting. The status parameter summarizes the severity of the messages for the
manager and any managers it coordinates and can be one of the following: Clear, Info, Warning, Error, Fault, or Fatal.

There are three types of parameters that a builder of a user interface might want to designate difterently. They are:

¢ Control parameters are either set directly by the user or are computed from the values of other control
parameters. They may be passed down to the hardware when an activate command is issued.

¢ Feedback parameters exist merely as a means for the manager to pass values back to the user. Their values may
be set at any time by the system, but may not be modified by the user.

e Auto parameters, unlike Control parameters, are activated immediately upon any change of their value. They
may only be set directly by the user and are for controlling aspects of devices that are observation independent.
An example of an auto parameter is the rate at which a monitor point is sampled.

Parameters also share a common set of attributes that a user interface may want to display. Some of the important
attributes of parameters are:

¢ Touched attribute indicates that a control parameter has been modified but that an activate command has not
been issued and, thus, hasn’t been acted upon or placed into the hardware.

s Primary attribute indicates a parameter that is part of the minimum set of parameters that fully define the state
of the manager. Reverting all primary parameters to a previously saved set of values will always return the
device to its previous configuration.

o [llegal attribute indicates a parameter whose value 1s illegal. The manager protects its associated device by
checking all values and marking those having bad values as illegal.

2.3 Manager Samplers

Samplers are software "test points” that provide to the user interface a continuous stream of data values much like that
from a power meter, frequency counter, or voltmeter. Sampler values are time-tagged and, like parameters, have a set of
common attributes. For example, “Y gor” will set a sampler’s error attribute whenever the sampler value 1s “bad.”

2.4 Messages

Messages are essentially strings of text describing the nature of an event or problem within the system. Accompanying
the message are attributes describing: (1) the severity of the event (e.g, Fatal, Fault, Error, Warning, Notice, or
Information); (2) the name of the manager or device that generated the message; (3) a time stamp as to when the event
occurred; (4) a time stamp when the event cleared; and (5) a message type (e.g., Asserted, Cleared, Transient, System
Up, or System Down).

3. THE CONTROL LIBRARY FOR ENGINEERS AND OPERATORS

The "Control Library for Operators and Engineers,” better known as CLEQ, is the interface designed to meet the needs
of staff operators, engineers and programmers in monitoring, controlling, and debugging hardware and software for the
GBT. Although designed for operators and engineers, other NRAO staff members and observers have been finding
CLEO very useful. CLEO provides a user interface that allows its users to modify almost every aspect of the GBT
hardware. It provides tools that summarize the status of groups of systems as well as a wide suite of applications for
easing the workload of those dealing with the GBT. Like all user interfaces, it was designed to bring clarity and ease of
use to a complicated underlying system. CLEO is a system with extensive breadth and depth.

3.1 A success story: Tcl/Tk and CLEO

CLEO is written almost exclusively in Tcl/Tk’, a scripting language similar to Perl and Python, and already used for
control interfaces for various telescopes. For example, about a dozen papers describing telescope user interfaces that use
Tcl/Tk were presented in “Telescope Control Systems IIL™'° I was assisted in the project by the part-time efforts of
Kevin Crump and Christine Rebinski, two undergraduates from Davis and Elkins College, a local liberal arts school.
Both students had never programmed in Tcl/Tk before joining the project but, within a few weeks, were substantially
contributing to the effort. In total, about eighteen months spread over four years have gone into the project. With almost
80,000 lines of code, our productivity averages to about 200 lines of code per day!

Although a significant part of this high productivity arose from the architecture of the underlying “Ygor” system, other
factors came into play. One of the reasons Tcl/Tk was chosen was the potential for such a high productivity inherent in a
scripting language like Tcl. As shown by Prechelt', scripting languages have about a factor of two cost advantage over
traditional languages like C, C++, and Java simply because fewer lines of code are needed in a scripting language than in
a traditional language. We concur since our estimate is that the project cost would have been somewhere between three
and five times higher if we had used Java.

Another reason Tcl/Tk was chosen was the ease with which a seripting language could be learned, as was proven true by
our experiences. Since Tcl/Tk has a large user base, we also exploited the large body of third-party libraries of
debugging and development tools, most of which were free. In total, only about $150 was spent on programming tools.

With such a high rate of code production, one would start to worry that maintenance costs could be high if not enough
effort was put into the system infrastructure. Yet, for over the past year, maintenance and development take up a mere
5% of my time. At most, one bug is reported every two weeks and bug turn-around time is usually less than a day. As1
write this, only one bug remains cutstanding. Thus, | believe that our high production rate did not compromise the
maintainability of CLEQ.

The success of a software project is only partly measured by costs and number of bugs. The user of the software must
also be satisfied, which appears to be the case for CLEO. Currently, staff has submitted under a dozen, low-priority,
low-cost enhancements that have yet to be implemented. Interviews indicate that engineers and operators like the
system and observations show that seldom does a user falter when using CLEO. Other groups that use CLEQO, such as
astronomers, find more in CLEO that they wish were different. However, CLEO was not written for these occasional,
accidental users and its design would have been compromised, and costs would have accelerated, if CLEO had tried to
meet the needs of an extended audience.

3.2 CLEO architecture

CLEO 1sn't a single program but a set of over 40 applications. Dividing CLEO into multiple applications increased the
reliability and robustness of the system without significantly increasing costs. Most applications are designed to work
with a particular device, from the smallest of components to the telescope itself. Other applications provide summary
information or gross control over a large set of devices. A few applications have nothing to do with the telescope or a
device but instead help one use a system as powerful as CLEO.

Although we had a choice of writing CLEO using objected-oriented Tcl, we decided that development time would be
less if we used a more procedural approach. Since most CLEO applications are well under two thousand lines of code,
neither productivity nor maintainability significantly suffered by our decision. Only one application that deals with the
display of messages would have benefited from an object-oriented approach.

The infrastructure behind CLEO 1s rather extensive with over half of our code residing in libraries. In addition to our
libraries, CLEO makes heavy use of third-party software. The following lists those libraries 1 think would be helpful to
other developers of Tcl programs:

¢ BLT: a widget and command library developed by G. Howlett and especially useful for generating histograms
and graphs (http://incrtcl sourceforge net/blt).

¢ vTcl: a GUI builder and integrated development environment for Tcl/Tk developed by S. Allen and written
entirely in Tel/Tk (http://www giantlaser.com/vtcl).

¢+ DBwidget: a mega-widget library developed by UNIFIX (http:/sourceforge. net/projects/tcllib)

¢ tkCon: a combined debugger and console developed by J. Hobbs (http://tcl activestate.com/community/hobbs).

¢ Treewrap: a utility developed by D. LaBelle that creates standalone Tcl applications for distribution to users
(http://freewrap.sourceforge net).

Since Tcl is a scripting language, debugging is both easier and more difficult than with traditional languages like C or
Java. Since coding errors are only found during run time, a developer must test every possible consequence of

conditional and loop constructs. To achieve this level of testing, every CLEO application uses a generic ‘simulator’ that
allows the developer to test a significant fraction of the application-specific code. Some of the more complicated
applications require special simulators.

Debugging Tel is simplified because of tools like tkCon mentioned above. With tkCon, if a bug 1s found, one can
actually modify and test the code while the application 1s still running. There is no need to exit that instance of the
application, start up a debugger, restart the program, and try to recreate the condition that generated the problem.
Additionally, if a run-time error occurs (e.g., a reference to a variable that doesn’t exist), CLEO usually catches the error
and automatically e-mails the developer a full stack trace of the problem. In essence, CLEO provides a description of a
bug it has discovered within itself! These features substantially reduce the time needed for bug fixes, create more robust
and reliable code, and more than compensate for the need for simulators.

3.3 CLEO applications

Space prevents me from discussing more than a few of the CLEO applications. The following is a collection of some
typical applications as well as those that designers of control software might find interesting,

3.3.1 Device Explorer

¢ Device Explorer - [O] x]
Hie Managers Help
Manager Parameters ‘ Parameter Fields Samplers ‘ Sampler Fields ‘
”::"T":”;crf . | |active_input_ports 13: count 5 [[power_suppiies l,] ?
:A?;\T; FL:IISrEREack active_output_pors | Iport,1 | [|RF_power | nagsvolts
L Amenga analog_power_level port,2 N pos1Svolts
L archivist asap port,3 neglsvolts
LBCPM attenuator port4 posZavolts
L converterRack halance port,3 posiZvolts
LDCR halance_select port,B seconds
+Holography debuglLevel port,7 MJD
I IFManager defaultSampleRate port,8 flags
+IFRack filter_select port,3 refFrame
OpticalDriver1 laser_auto_|evel_control Kfli"*j units
OpticalDriverz laser_power o
OpticalDriver3 nextscanNumber i ‘_,l_,,,__,{w .
OpticalDriverd — i i (]’ ype: Int L 95
OEiicalDrwerﬁ roise_tanduddin {Units: None | [fr——————®
OpficalDrivers noesouee [alues: N [
Opf D 7 power_supplies_status ‘ArrayCount 0 Afiributes
plicalbnver projectid ‘Descnpt\un number of | I
OpticalDriverd R puﬂs used Type: float |
IFRouter receiver Units: Yolts
[FNoise recipientNumber o Values:
LLol requestedStanTime : . ArrayCount: D
Ernatremant: requestedStopTime active_input_ports Description: « 5 volts
I MotorRack |51 B = [
ills2 Al o (E) | |
[J T Fe| \‘—)‘ [power_supplies
array Contents ' New Value: — possvolts N
Mum Fields e
‘ — Il () L | \ 5058534 \ ¥) |
_I Aulo Prepare Frepare IFRack | Status |clear Sta{ﬁ)dy ulalT Cuit

Figure 3: Device Explorer for controlling and monitoring every manager, parameter, and sampler on the GBT. From right to left the
important parts of the screen are: (A) a hierarchal list of coordinators and managers, (B) the list of parameters for the selected
manager, (C) the fields within a parameter, (D) the attributes of the selected parameter, (E) the current value of the parameter, (F) a
widget for entering a new value for the parameter, {(G) list of samplers for the selected manager, (H) the fields within a sampler, (I) the
attributes of the sampler, (T) the current value of the sampler, and (K) the state and status of the selected manager.

Device Explorer was the first CLEO application we presented to our users, a decision that was well-calculated since
simpler applications could have been released first. Device Explorer (Figure 3) allows the user to interact with every
coordinator, manager, parameter, and sampler in the system. In its design we exploited the commonality of methods
provided by “Ygor™ for every manager. With the introduction of Device Explorer, and for the {irst time, engineers and
programmers could modify every aspect of a device without requiring that someone create a user interface for that

device. In essence, by releasing Device Explorer we immediately relieved the pressure for manager-specific GUIs.
Since its release, Device Explorer remains one of the most used and most clever CLEO applications.

3.3.2 Typical device screens

Engineers requested that screens for devices like receivers, L.O., and LF. equipment use schematics to show the flow of
signals through the device. Figure 4 is the screen for the 12-18 GHz, dual-feed receiver and is typical of many CLEO
applications. Note the placement of widgets on top of a schematic that we created as a GIF file using SmartDraw
(http://www.smartdraw.com), a substantially easier task than if we had used the altemative of drawing the schematic
using native Tk canvas commands.

\(12 - 18 Ghz Receiver | _ D] x|

hie Managers 3SamplerRates Help

FPower Supplies
+5v [507 [+15v [1500
s2avf 2822 | -15v [15.09]

R Noise Ig
o Cryo Monitor
- On I” Power Supply On
15K) 15.14 S0K | 6641
P~ IFRiouter: J26 Cal ManiMCE
=5 L~ D Rl Ct Monitor |—0_
e 3000/500 : —
R f 1 Fiefrip Man/MCB
l by (Eon | ~ Ct Monitor ||
S o T Ambient Temp (K3 [300.29
L1 (Im 0 || IFRouter . J58 !
L [‘ . pewar vac (v -1 00|
[N [—|_ 3000500 | ™ Dewar Heat Monitar | 1
= =] Ext. Ker Pump Vac (v [_10.00 |
Xfer . : .
[Mode |__Ext | IFRouter:J10 Vet Sojencid Monitor| 0|
e L1 Pump Recuest Monitor | 0
L~ —| 30006500 —DT e o
. R [Geson G | Crvo Control | 7
- | R2 (P 0 | Cryo Status !_E?
i = N |FRouter . J42 | T
| | Cryagenics State Cooling
L = L2 D, L2 |
—| 3000/500 | L= =
N~ L
L

MNoise Source Maonitor

013 ||LO Fower Voltage (V) Current {(mA}
\
LO

T - On 1 Power Supply On ace . [EoE F =
e | B = e [5m] [Tes]
LO1Fouter:55_J5
EHAS T Mcc.aée Ext Miscellanaous
e : Bias Switch Contral|_ 0|

IF Filter Switch Control

g

LO1Router:513_J4

Kfer Switch Status | 7
; Cryogenic Amplifiers 8
ecelver
L Locken ||- A m| Gt | At i = = Bias Bits | C
‘ N/ LED(V) [446 | [354] [446 [353 camts| 0

= Stage 1 (v) [048] [-032] [-0.25] [—024] Kfer Switch
| Status |clear State E_Standby [ula]+ 21:29:24 I Stage 2(v) [042] [-os4] [055 [=057] Bits
Figure 4: The CLEO application for the 12-18 GHz, dual-feed receiver. Features common to many CLEO are (A) Lock/Unlock frame
of widgets and (B) a State/Status frame of widgets.

Device screens typically have a “Lock/Unlock™ frame of widgets. Since any CLEO application can be started by
anyone, engineers didn’t want unauthorized users controlling devices. A typical CLEO application starts in a locked
state which has all control widgets deactivated. A user must be in a security database, described below, to unlock a
screen and control a device. Thus, everyone can monitor every device but only a select few can control a device.

Screens usually have a “State/Status” frame of widgets (a reuse of the similar frame in Device Explorer) that depicts and
color-codes the state and status of the managers associated with the screen. Widget background colors differentiate
widgets associated with samplers, control parameters, and feedback parameters. The color of widget borders shows, for

example, whether a sampler has a possible problem, whether a parameter value has been sent to the hardware, or
whether a parameter value 1is 1llegal.

3.3.3 CLEO antenna screen

Figure 5 shows the CLEO antenna screen, one of the more complicated applications but still very similar in design to
most other CLEO applications. Here, the job of controlling and monitoring the telescope 1s divided between different
screens. Tab notebooks are heavily used as a way of organizing functionalities as well as preventing an overloading of
widgets on a single screen. Note that the color-coding here 1s the same as used everywhere else in CLEO, which gives
every CLEO application the same look and feel.

\\ Antenna Monitor M =] B3

File Managers Display Help

Encoder J2000 ||| U5 20

ag
Azimuth Elevation Right Ascension Declination

Indicated | 189.75505 | 52.28173 | | 12:57:04.70 | 01:01:236 *

BS

Commanded | 189.75519 | 52.28172 | 12:57:04.68 | 01:01:23.6
==

Rate (‘/min) lﬁ % Antenna Control =
Difference 0.00014
0.5

Subr Position Ctrli Subr X¥Z Cul | Subr F1/F2 Cul | Prime Focus Ctrl

Antenna Ctrl Drives Pointing

= — B Rl

Servo Error (*)
B1950 ® —| o me
IND o a5
oW
ComM I @ Right Ascension Declination 85
-3 -60%Nz’ 0 W e0 0
Position 1280 lsadl| 3122 * ERTENEYE 75
= ||] = |] |
o
Enavied axes: [] Rate (“fmin) | 1008 | 1003 £
| 2Nl S8] AL g4l [
P\nlenna(p Stalus [info st Offset + | ogi| 05| oo . ogk| 05| o0 o | 5[
“Ani A] 45
AmennaManag\ef—/ Status [info st Offset Rate (“min) | 0003 | 0.005
’ 35
= Cosine V Offset Coord. J2000 — a
IND
u 15
T JT]
-0 -45 D 45 0 135 180 325 70 IS 30 405 40| 5
Local Pointing Correctio | &l
{Arcmin) - Tahles.. Previous... | Mare Info...
Az Offset 1 0.0000 3 — | »
Locked | Scan Length (sec) Approximate Stop Position
Az Offset 2 0.0000 3 m 305
= Resolution (Arcmin) i ”””””
a
El Offset 0.0000 3 . og

— Subreflector Mode —— |
Move To update Oper. Maode DoScan =

- Position «, F1/F2

_— Close
Move w/Rate ~oxyz « Prime Special Position 4 |

Figure 5. CLEO Antenna monitor screen (upper left), control screen (right).. Important aspects of this the screens are: (A) current
telescope and commanded positions depicted numerically and (B) graphically relative to the limit switches, (C) State/Status frame,
(D) widgets for commanding the telescope to a position in a desired coordinate system, (E) pointing corrections (F) software “joy
stick™ (G) tab notebook for accessing the controls for the telescope optics, drives, ete.

3.3.4 CLEO message application

By far the most complicated CLEO application is that used to display messages from devices and managers (Figure 6).
The application provides the ability to filter messages by time, device, and message severity. Messages can be sorted by
severity, time, text, and assert or clear times. Messages can be organized by topics by dragging and dropping them onto
user-defined tab notebooks. A color scheme, similar to that used by the rest of CLEO, depicts message severity. There
is even a tool for submitting suggested changes to the text of error messages.

The message application allows for the generation of sounds using the CLEO sound server (see §3.3.8) when certain
events occur. It also provides for message “inference’ and ‘inhibition,” both of which are aimed at reducing a cascade of
error messages from a single failure. For example, if a power supply fails, one can expect other aspects of the associated
device to fail, possibly producing a cascade of error messages. If the power supply 1s being monitored, then message
‘inhibition” will display the message for the power supply and inhibit the display of the messages from all the other
components whose failure resulted from the bad power supply. However, if the power supply 1sn’t being monitored, one
can infer from the resulting cascade of error messages that the power supply was at fault; the message application hides
all messages and generates its own ‘inferred” message concerming the power supply.

CLEO provides a separate utility that searches the log of messages for messages that satisfy a user-specified set of
criteria. The application then graphically displays the found messages versus the time the messages occurred. This
“Analyze Messages” application has proved to be very useful in debugging problems after the fact and to catch patterns
in the sequence of events that produce messages.

_)(Messages M= E3
File Help |
_I Auto Remove Level Info | Create/Edit Tahs... | Tabs Manager... | Remove Cleared... | Refresh... | Quit |

Default | Spectral Linei Trash l

Configure Fillers | -1 Auto Scrall Sorled by:
Suggestion... |

Level || Device Host | Time | MNew Message. Placed at Top | Level
L\,| E}l DeviceName [Host | Assert | Clear | Message IJ
& # SpectralProcessor gemini 22:22:22 22:22:22 Spectral Processor B data formatter: scan: 279 record: 5 bytes: 9408 /|
&) # SpectralProcessor gemini 22:22:22 22:22:22 Spectral Processor A data formatter: scan: 279 record: 5 bytes: 9408

] ScanCoordinator vortex 22:17:21 HlgalaxySurveyd scan number 279
! 3 TaskMaster vortex 15:39:52 TaskMaster: No such process

i ActiveSurface vortex 07/24 13:38: ActiveSurfaceMgr lost connection to Activesurface servo host

1/

Figure 6: The CLEO message application

3.3.5 CLEO scheduler

A common task for staff and observers is the scheduling of a series of observations. The CLEO “scheduler” provides a
graphical interface for converting a catalog of source positions into an observing file. It is a standalone application that
can be used with almost any altitude-azimuth mounted telescope. As shown in Figure 7, the application shows a
representation of the celestial sphere, the location on the sky of the objects in the catalog, and a marker depicting the
position of a virtual telescope. The user specifies the duration of observations and then starts clicking on sources to
generate an observing file. When a user clicks on a source, the application calculates the time it will take to move the
virtual telescope to the source (properly corrected for the current telescope cable wrap) and perform the observation. The
source and telescope positions are then updated to the time at the end of the observation. The user then clicks on source
after source until the observing file is completed.

Scheduler

File Help

[_ o]]

L1290 Source: C105.0 08:00:50.47 48:2207.2 80.2

&30840 g AXI4TD

shMars

“Hitd

®a303m03

43C465.0

AIC452.0 4304300

(#ElvE

+HGP

@ Mg 3030

80 430310.0

—70 -
&3C298.0
—60 43C317.0
13E34E£|3E327 i
A3EHG0 '

1eg

DEC:| 48:17:30.0
Hgimuth: 330.341
o ve Time (min):| 6700 Hevation 6.400

o Mereuy
0

RA: | 08:07:04.30

Catalog...

Obsemving File...

Drav

v | Balactic Plane I Sun
[Observed Fositions | don
[+ Labels [Plansts
W Telescope v Sources

Source Intensity Range
| 30 Max[10000

™ Use all sources

Catalog mindmax
370010 8700.000

Obzarving Parameters

Procedure | None

Froo. Time (min)[10.0

UT Date and Time

Change Date Mime
A EIEIE]
ozta 0772072002 | Mw

LET: 10:60:38.98

Telescope Positian
Change A/H Pasttion

eimuth (Deg)] 308768

Sevation (Deg.)| 56118

Change RA/Dies Rosition
RA 143] TEIECE
DEC j EENEENEE]

Options

Qutt

Figure 7: CLEO Scheduler

¥ 1.F. Manager [_[o]x]
He Holp
HEILE G4 Lo L. ROUTER OPT. DRIVERS OPT. RECEIVERS

ConverterRack = - -

DCR) FRaciHloize OpticalDriver1 Ontieceiver
1 o - m Fr— m 0
52 B B
At
A5 Opticalfeceiver?
46 = =
A7 = B

DCR J3 (4_3) = OpticalDriverd x
Spectrum 2 o ﬁ_ OpticlReceiver3
Sideband Iower oz T
IF 3002003 = Ot oo]
Sky | 1412.003 {C) 1 =1
Banawidih | 7593414 OnticalReceivers
Palarization linear_y m B
Sinusoid rivars &
" [a f— L
AlLO [OpteaiFceivor’
Device OpticaDrivers = n
Manager | &
Paramater :
| From: OpticalDnverd-Ja. OpticalReceiver§;
Opticalbrivar? = —
Feed: Rovel_2:YR - £
Freq: 1700 to 1752 MHz =
Polarizafion: linsar_y
'u"‘Frf;%' ;f;&ﬂ @ OpticalDriveid DpticalRectiverT
Filter: Revel_2:FLIR - m B
Freg: 1150 to 1800 MHz -
Filter: Revrl_2:FLAR :
Free- 1300 to 1450 MHz
v Revel_2:MXR
LO: 4412.006 MHz Dptiensssivird
1150 o 1730 MHz - -
Component -- LO1 A& synthesizer b
Device: LOT Manager: LO1A Parameter: frequency +
Lower Sidetand: IFo = 4414.006 - IFi
Filter: Revrl_2:FLIR
Frer: 2600 to 3400 MHz
Attenuator: OpticalDrivers:attentator (=]
H"""Fg';“g‘;'s%"(:ﬁ?MHz J |v 25% + 50% & 75% e 100% At o Clek & Persist | Clesr
yi Quit ‘

Figure 8: IF Manager application. The important parts of the screen are: (A) a graphical representation of the cabling between
selected devices, (B) a hierarchal list of all connection points in the system, {(C) a summary of the signal processing upstream from
some selected point in the system, and (D) a full description of the signal processing.

3.3.6 IF Manager

The GBT probably possesses one of the most complicated systems of receivers, local oscillators, and signal processing
hardware ever used on a radio telescope. To help staff and observers properly set up the system we have developed the
CLEO TF Manager, shown in Figure 8. Its job is to represent the cabling between devices as well as all of the signal
processing that has happened from the receiver to any point in the system. Using this tool, one can discern whether or
not the system has been properly configured as well as help determine where a problem might exist.

3.3.7 CLEO Server

Since the GBT resides in a rural area where some support staff live up to an hour from the observatory, engineers
requested that they should be able to run CLEO applications from their home computers so as to reduce the response
time to simple problems. Unfortunately, the distances between homes and telephone switching stations, as well as the
low population densities, means that engineers typically would be using modems with at best 26k-baud connections.
Thus, sending, for example, X-windows displays to a home PC running an X-windows server is impractical. The CLEO
Server, currently undergoing beta testing, should make this request a reality.

Every CLEO application can run just as easily on a Windows-based PC as well as on various flavors of Unix. If an
engineer were to run a CLEO application from hom,e all that is required is some way of providing that CLEO
application with a path into the “Ygor” managers. The CLEO Server provides that path with each remote computer
acting as a client to the server. To get the most out of the limited connection speed, the server formats and truncates all
parameter and sampler values using formatting specifications provided by each client. Also, the server keeps track of
the last formatted values sent to a client and, if the formatted value hasn’t changed, does not resend the value.

Our testing indicates that the system works and that a 26k-baud connection can handle up to ten typical CLEO
applications simultaneously. We expect to distribute CLEO to home users within the next two months.

3.3.8 Other CLEO applications
Some of the other interesting applications that make up CLEO include:

Launcher: The Launcher 1s usually the first CLEO application a user starts. Because the suite of CLEO applications 1s
rather large, the Launcher’s job is to provide a simple and organized interface for starting other CLEO applications.
Since the telescope operator sits in {ront of multiple computers, each of which might have multiple screens, the Launcher
also provides the capability of starting any CLEO application on any of these monitors.

Gateway: One of the requirements for CLEO was that a staff member should be able to monitor a device but only the
telescope operator and one other person, (e.g., an observer or engineer) can control the device. To provide this level of
security, CLEO provides a password-protected application, called the Gateway, which maintains a database describing
who has the ability to control what device. Both “Ygor™ and CLEO use this database to determine control privileges.

Sound Server: The Sound Server addresses the problem of what to do if multiple CLEO applications runming on
multiple computers on a myriad of screens want to generate sounds associated with events. Every CLEO application
can act as a client of the Sound Server and, when a sound is needed, provides the Sound Server the name of the sound
file to play, a priority level for the sound, and the number of times the sound is to be repeated. The client can also
specify that the sound is to be played continuously until the user acknowledges the event. The server then queues the
request for sounds based on arrival time and priority and plays the sound at the front of the queue.

Save/Load Configuration: The Save Configuration application allows the user to store for later use the values of the
primary parameters for a user-selected set of devices. The Load Configuration application uses a previously saved
configuration file to return the system back to the state it was in when the configuration was saved.

Manager Control: A single application that displays the state and status of every manager in the system. With one
glance, a user can determine the health of every device as well as what that device 1s doing,

4. CONCLUSIONS

The success of CLEO can be measured in terms of low development and maintenance costs, reliability, robustness, and
user satisfaction.

Low development costs are promoted by the uniformity of methods provided by the underlying control and monitor
system. Every device, regardless of what it does, looks the same and employs the same methods for specifying
commands, altering parameters, and accessing sampled monitor data. Only the attributes of managers differ.

The technology of scripting languages, in particular Tcl/Tk, and the ability to tap into a wide range of existing
software libraries, reduces development costs as well as maintenance costs.

The robustness and reliability of CLEO is due to a combination of using simulators to test scripts and sophisticated
debugging tools that promote finding and fixing bugs in a timely and relatively painless fashion.

Robustness and reliability were improved by dividing CLEO into a suite of applications instead of developing a
single application.

User satisfaction stems from a number of reasons. The design adheres to the requirements set by its users and
follows common practices in GUI design. Users will also appreciate a system that was released before they needed
it, 1s robust and reliable, and whose infrastructure allows for fixing bugs quickly and allows for adding new features.

5. ACKNOWLEDGMENTS

The National Radio Astronomy Observatory is a {acility of the National Science Foundation, operated under cooperative
agreement by Associated Universities, Inc.

10.
11.

REFERENCES

vanden Bout, P., “Green Bank Telescope and the Millimeter Array,” Proc. SPIE Vol. 3357, p. 2-11, Advanced
Technology MMW, Radio and Terahertz Telescopes, Thomas G. Phillips; ed., 1998.

Lockman, F. I, “The Green Bank Telescope: an Overview,” Proc. SPIE Vol. 3357, p. 656-665, Advanced
Technology MMW, Radio and Terahertz Telescopes, Thomas G. Phillips; ed., 1998.

JTewell, P. R., “The Green Bank Telescope,” Proc SPIE Vol. 4015, p. 136-147, Radio Telescopes, Harvey R.
Butcher; ed., 2000.

Lacasse, R., “Green Bank Telescope Active Surface System,” Proc. SPIE Vol. 3351, p. 298-310, Telescope Control
Systems ITI, Hilton Lewis, ed., 1998.

Brandt, J.T., “Controlling the Green Bank Telescope,” Proc. SPIE Vol. 3351, p. 96-108, Advanced Telescope and
Instrumentation Control Software”, Hilton Lewis, ed., 2000.

Clark, M. H., “The Control Software Architecture for the Green Bank Telescope,” Proc. SPIE Vol. 3351, p. 287-
296, Telescope Control Systems I11, Hilton Lewis, ed., 1998.

Ford, IM., “GBT Telescope and instrumentation control system hardware architecture: computers, networks,
interfaces, and timing,” Proc. SPIE Vol. 3351, p. 387-395, Telescope Control Systemns [11, Hilton Lewis, ed., 1998.
Brandt, 1.1, “Reliable Multicast Protocols and their Application on the Green Bank Telescope,” Proc. SPIE Vol.
3351, p. 396-405, Telescope Control Systems 11, Hilton Lewis, ed., 1998.

Ousterhout, I K., “Tcl and the Tk Toolkit,” Addison-Wesley, 1994

“Telescope Control Systems I11,” Proc. SPIE Vol. 3351, p. 190-196, Hilton Lewis, ed., 1998.

Prechelt, L., “An empirical comparison of C, C++, Java, Perl, Pyhton, Rexx and Tcl,” THEE Computer 33(10), 23-
29, 2000.

